product (5.6 g., 62%) was obtained by recrystallization from CCh; infrared (Nujol): NH at 3350, C=O at 1735 m and 1653 s, SO₂ at 1343 and 1370 cm.⁻¹

.1nal. Caled. for $C_{13}H_{18}N_2O_8S$: C, 49.68; 11, 5.73; N, 8.92; S, 10.19. Found: C, 49.75; H, 5.71; N, 8.86; S, 10.24.

1-Acetyl-1-allyloxy-3-(p-tolylsulfonyl)urea was prepared simi-

Larly, n.p. 155.5–156.5°, in 29% yield. Anal. Caled. for $C_{21}H_{22}N_2S_2O_5$; C, 56.50; H, 4.93; N, 6.28; S, 14.35. Found: C, 56.00; H, 4.97; N, 6.43; S, 14.81.

This product decomposed to give p-toluenesulfonamide upon chromatography on alumina.

2-Benzyloxy-4-(p-tolylsulfonyl)allophonate.---A solution of 3.2 g. (0.016 mole) of N-carbethoxy-O-benzyloxyhydroxylamine' and 3.2 g. (0.016 mole) of *p*-toluenesnlfonyl isocyanate in dry bebzene was refluxed for 3 hr. The solvent was removed and 3.8 g. (60%), m.p. 97.5-09°, was obtained by recrystallization from ČĊL.

Anal. Caled. for C₁₈H₂₀N₂O₆S: C, 55.10; H, 5.10; N, 7.14; S, 8.16. Found: C, 55.06; H, 5.14; N, 7.26; S, 8.25.

p-Toluenesulfonyl Isocyanate with N-Benzoyl-O-benzyl-Formation of Complexes. 1,3-Bis(p-tolylhydroxylamine. sulfonyl)urea with N-(Benzyloxy)benzamide (II) and N-(Benzyloxy)benzamide with p-Toluenesulfonamide (III).--A solution of 4.9 g. (0.025 mole) of p-toluenesulfonyl isocyanate and 2.8 g. (0.0123 mole) of N-benzoyl-O-benzylhydroxylamine in 25 ml. of benzene was refluxed for 2 hr. The solvent was evaporated, and the residue was recrystallized from acetone-petroleum ether and a product (II) (5.0 g., 67%) was isolated, m.p. 129-130°

Anal. Calcd. for $C_{29}H_{29}N_3O_5S_2$: C, 58,59; H, 4.71; N, 7.07; S, 10.77. Found: C, 58.71; H, 4.79; N, 7.08; S, 10.73.

From the mother liquor (acetone-petroleum ether) was obtained 1.8 g. (33%) of a second solid (III), m.p. 92–94°. The infrared spectrum of III in chloroform showed NH at 3420, 3400, 3355, and 3230-3275 (broad) and CO at 1675 cm.⁻¹. The n.m.r. spectrum of III in CDCl₃ showed CH₃ & 2.40, CH₂ 5.02, ArH 7.21-7.87, 5 peaks 14H.

Anal. Calcd. for $C_{21}H_{22}N_2O_4S$: C, 53.32; H, 5.53; N, 7.04; O, 16.08. Found: C, 53.27; H, 5.50; N, 7.04; O, 16.28.

II was readily converted to III, ethyl p-toluenesulfonyl-carbamate, p-toluenesulfonamide, and N-benzoyl-O-benzylhydroxylamine when recrystallization from ethanol was attempted. III was readily decomposed to p-toluenesulfonamide and N-benzoyl-O-benzylhydroxylamine by boiling with water, and III could be formed by refluxing equimolar quantities of ptoluenesulfonamide and N-benzoyl-O-benzylhydroxylamine in ethanol.

(11) L. W. Jones and E. E. Fleek, J. Am. Chem. Soc., 50, 2023 (1928).

Monothiophenyl Malonate

JOHN C. HOWARD, MICHAEL C. LIN, PATRICIA MATTHEWS, AND SAM A. SINGAL

Biochemistry Department, Medical College of Georgia, Angusta, Georgia

Received June 23, 1965

Monothiophenyl malonate is a useful intermediate in the synthesis of malonyl coenzyme A, but although two methods of its preparation have been reported^{1,2} the product has in each case been an oil. By a modification of the method of Trans and Brady¹ we have isolated the product as an analytically pure crystalline solid.

Experimental Section³

To a mixture of 4.17 g. (40 mmoles) of malonic acid and 30 ml. of dimethylformanide was added at 0-5°, 2.2 g. (20 mmoles)

of benzepethiol all at once; a dark blue solution resulted. solution of 9.1 g. (44 mmoles) of dicyclohexylearbodiimide in 50 ml, of dimethylformamide was placed in an addition funnel and added dropwise to the magnetically stored solution at 11 5°. Addition was completed in 30-45 min. The mixture was then stirred for 2-3 br. at 0-5°. During the addition and subsequent stirring the color changed from blue to vellow. The mixture was added to 600 ml. of ice water, stirred for several minutes, and collected on a sintered-glass formel. The vellow solid, which consisted mainly of dicyclobexylnrea, was washed with 150 ml. of ice water and 200 ml, of ether. The two phases of the filtrate were separated and the aqueons phase was extracted with 200 ml. of ether. The ethereal extracts were combined and washed with 100 mL of 0.01 M HCl and 200 mL of ice water. This solution was thea dried (MgSO₃, Darco) for 0.5 hr. The solvert was removed by a rotary evaporator at room temperature and mduced pressure. The residual golden brown oil was dissolved in 10 ml. of tohese and diluted with 40 ml. of perrolems either (b.p. 30-60°). The nearly colorless crystals which separated were collected and recrystallized from the same solvent. The yield was 0.5-0.7 g. (13–18 C_t), m.p. 72–73°, ultraviolet absorption $\epsilon_{237}^{CH_3CN}$ 4200. A 10% CHCl₃ solution in a 0.1-num. NaCl cell absorbed strongly in the infrared at 1740 cm.⁻⁴

Anal. Caled. for C₉H₈O₈S: C, 55.09: H, 4.11: S, 16.34. Found: C, 55.07; H, 4.09; S, 16.44.

(4) Benzinethiol frequently causes severe dermatitis. Rubber gloves should be worn and all operations should be conducted in an efficient hood.

The Reaction of Chloramine with Mercaptopyridine and Mercaptopyrimidine Derivatives

THOMAS J. HURLEY AND MARTIN A. ROBINSON

Olin Mathieson Research Center, New Hacen, Connecticut

Received July 12, 1965

The reaction of chloramine with heterocyclic mercaptans has, in every instance that was investigated, resulted exclusively in the sulfenamido derivative. The resulting compounds are of considerable interest because of the known biological and agricultural application of the closely related aninopyridine analogs^{1,2} and the extremely potent germicidal action of 2-mercaptopyridine N-oxide.3

Experimental Section

All the melting points were taken in capillary tubes and were corrected (ASTM specification thermometers). The molecular weights were obtained by use of a Mecrolab Osmometer, Model 302. Sucrose and benzil were employed as standards.

2-Sulfenamidopyridine.--- An aqueous solution of chloramine was prepared by the slow addition of 90 ml. of iced 1.84 M NaOCI solution to 278 ml. of 1.84 M NH₃ solution previously cooled to -5°. To the resulting chloramine solution, an aqueous solution of the sodium salt of 2-mercaptopyridine was added slowly taking care that the temperature did not exceed 5°. The sodium salt was prepared by dissolving 16.5 g. (0.15 mole) of 2-mercaptopyridine in 75 ml. of 2 M NaOH solution. The product precipitated immediately on addition of the sodium salt to the chloramine solution. The crude product was filtered, dried under vacuum to remove excess water, and recrystallized from a petroleum ether-isopropyl alcohol mixture. This resulted in 10.5 g. (55% yield) of a white crystalline product, m.p. 79-80°.

The other compounds were made with appropriate modifications of the general method described above. The results are listed in Table I.

E. G. Trams and R. O. Brady, J. Am. Chem. Soc., 82, 2972 (1960).
 R. Bressler and S. J. Wakil, J. Biol. Chem., 236, 1643 (1961).

⁽³⁾ The melting point was determined in a capillary by means of a calibrated, electrically heated block. Ultraviolet and infrared spectra were measurel, respectively, by Beckman DU and Perkin-Elmer 137-B spectrophotometers. Elemental analyses were carried out by Clark Microanalytical Laboratory, Urbana, Ill.

⁽¹⁾ H. E. Thompson, C. P. Swanson, and A. G. Norman, Botan, Gaz., 107, 476 (1046).

⁽²⁾ F. Leonard, F. A. Barkley, E. V. Brown, F. E. Anderson, and D. M. Green, Antibiot. Chemotherapy, 6, 261 (1956).

⁽³⁾ W. A. Lott and E. Shaw, J. Am. Chem. Soc., 71, 71 (1940).

	ANALŸTICA	AL RESULTS FOR	HETEROCY	YCLIC SU	ULFENA	MIDES	5.					
Yield,	М.р.,		~Mol. wt		Calcd., %			Found, %				
%	°C.	Formula	Calcd.	Found	С	\mathbf{H}	Л	\mathbf{s}	С	Н	Ν	s
55	79-80	$C_5H_6N_2S$	126	122	47.6	4.8	22.2	25.4	47.7	5 .2	22.1	25.3
46	79-80	$C_6H_8N_2S$	14 0	145	51.4	5.7	20.0	22.9	51.2	5.8	20.1	22.7
40	110 - 112	$C_4H_5N_3S$	127	133	37.8	3.9	33.1	25.2	37.7	3.8	33.6	25.0
42	114-116	$C_{\delta}H_7N_8S$	141	149	42.6	5.0	29.8	22.7	42.7	5.0	30.2	22.5
58	280 - 285	$\mathrm{C_5H_8N_3NaO_2S}$			30.5	4.0	21.3	16.2	30.4	3.5	20.9	16,5
4 0	146-148	$C_5H_6N_2OS$	142	136	42.3	4.2	19.7	22.5	42.2	4.6	20.0	22.5
	Yield, % 55 46 40 42 58 40	ANALYTICA Yield, M.p., °C. 55 79–80 46 79–80 110–112 42 114–116 58 280–285 40 146–148	ANALYTICAL RESULTS FOR 1 Yield, % M.p., °C. Formula 55 79–80 $C_{\delta}H_{6}N_{2}S$ 46 79–80 $C_{6}H_{8}N_{2}S$ 40 110–112 $C_{4}H_{5}N_{3}S$ 42 114–116 $C_{5}H_{7}N_{3}S$ 58 280–285 $C_{5}H_{8}N_{4}NaO_{2}S$ 40 146–148 $C_{5}H_{6}N_{2}OS$	ANALYTICAL RESULTS FOR HETEROCT Yield, % M.p., °C. Formula Calcd. 55 79–80 C ₆ H ₆ N ₂ S 126 46 79–80 C ₆ H ₈ N ₂ S 140 40 110–112 C ₄ H ₈ N ₂ S 127 42 114–116 C ₅ H ₇ N ₃ S 141 58 280–285 C ₅ H ₈ N ₈ NaO ₂ S 40 146–148 C ₅ H ₆ N ₂ OS 142	ANALYTICAL RESULTS FOR HETEROCYCLIC ST Yield, $\%$ $^{\text{O.p.}}$, $^{\circ}C.$ Formula $^{\text{Oal. wt.}}$, $^{\circ}Calcd.$ Found 55 79–80 $C_{\delta}H_{6}N_{2}S$ 126 122 46 79–80 $C_{6}H_{8}N_{2}S$ 140 145 40 110–112 $C_{4}H_{5}N_{3}S$ 127 133 42 114–116 $C_{5}H_{7}N_{3}S$ 141 149 58 280–285 $C_{5}H_{8}N_{3}NaO_{2}S$ 40 146–148 $C_{5}H_{6}N_{2}OS$ 142 136	ANALYTICAL RESULTS FOR HETEROCYCLIC SULFENA Yield, $\%$ $^{\text{OC}}$. Formula $^{\text{OO}}$. ^{\text{OO}. ^{\text{OO}.	ANALYTICAL RESULTS FOR HETEROCYCLIC SULFENAMIDES Yield, $\%$ $^{\circ}$ C. Formula Calcd. Calcd. Calcd. 55 79–80 C5H6N2S 126 122 47.6 4.8 46 79–80 C6H3N2S 140 145 51.4 5.7 40 110–112 C4H5N3S 127 133 37.8 3.9 42 114–116 C6H7N3S 141 149 42.6 5.0 58 280–285 C6H3N3AO2S 30.5 4.0 40 146–148 C6H6N2OS 142 136 42.3 4.2	ANALYTICAL RESULTS FOR HETEROCYCLIC SULFENAMIDES Yield, $\%$ $^{\text{O.p.},}$ $^{\text{O.p.},}$ $^{\text{O.l. wt.}}$ $^{\text{Calcd. Found}}$ $^{\text{Calcd. Mod}}$ ^{\text{Calcd. Mod}} ^{	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ANALYTICAL RESULTS FOR HETEROCYCLIC SULFENAMIDES Yield, $\%$ $^{\text{N.p.},}$ $^{\circ}$ C. Formula Calcd., Found C Calcd., % C 55 79–80 CsH6N2S 126 122 47.6 4.8 22.2 25.4 47.7 46 79–80 C6H3N2S 140 145 51.4 5.7 20.0 22.9 51.2 40 110–112 C4H5N3S 127 133 37.8 3.9 33.1 25.2 37.7 42 114–116 C5H7N3S 141 149 42.6 5.0 29.8 22.7 42.7 58 280–285 C5H8N3NaO2S 30.5 4.0 21.3 16.2 30.4 40 146–148 C6H6N2OS 142 136 42.3 4.2 19.7 22.5 42.2	ANALYTICAL RESULTS FOR HETEROCYCLIC SULFENAMIDES Yield, $\%$ $^{\text{N.p.},}$ $^{\circ}$ C. Formula Calcd., $\%$ Found 55 79–80 C ₈ H ₆ N ₂ S 126 122 47.6 4.8 22.2 25.4 47.7 5.2 46 79–80 C ₆ H ₈ N ₂ S 140 145 51.4 5.7 20.0 22.9 51.2 5.8 40 110–112 C ₄ H ₅ N ₃ S 127 133 37.8 3.9 33.1 25.2 37.7 3.8 42 114–116 C ₆ H ₇ N ₃ S 141 149 42.6 5.0 29.8 22.7 42.7 5.0 58 280–285 C ₆ H ₈ N ₃ NaO ₂ S 30.5 4.0 21.3 16.2 30.4 3.5 40 146–148 C ₆ H ₆ N ₂ OS 142 136 42.3 4.2 19.7 22.5 42.2 4.6	ANALYTICAL RESULTS FOR HETEROCYCLIC SULFENAMIDES Yield, % M.p., °C. Formula Caled % Found, % 55 79–80 C ₃ H ₆ N ₂ S 126 122 47.6 4.8 22.2 25.4 47.7 5.2 22.1 46 79–80 C ₉ H ₈ N ₂ S 140 145 51.4 5.7 20.0 22.9 51.2 5.8 20.1 40 110–112 C ₄ H ₈ N ₃ S 127 133 37.8 3.9 33.1 25.2 37.7 3.8 33.6 42 114–116 C ₅ H ₇ N ₃ S 141 149 42.6 5.0 29.8 22.7 42.7 5.0 30.2 58 280–285 C ₅ H ₈ N ₃ NaO ₂ S 30.5 4.0 21.3 16.2 30.4 3.5 20.9 40 146–148 C ₆ H ₆ N ₂ OS 142 136 42.3 4.2 19.7 22.5 42.2 4.6 20.0

TABLE I

^a All of the compounds were recrystallized from benzene-petroleum ether (b.p. 65–110°) except 2-pyridinesulfenamide (isopropy alcohol-petroleum ether), sodium 2-sulfenamido-6-methylpyrimidin-4-olate monohydrate (water), and 2-(pyridyl 1-oxide)sulfenamide (methanol.)

Potential Inhibitors of Cancerous Growth. V. Substituted Benzylidene Derivatives of D-Ribose as Synthetic Intermediates

W. J. SERFONTEIN, G. J. LOURENS, AND H. L. DE WAAL

Department of Organic Chemistry, University of Pretoria, Pretoria, South Africa

Received May 5, 1965

The selection of ribose as a "carrier" molecule in the design¹ of anticancer compounds with enhanced specific action (XI) is suggested by its role in cellular nucleic acid synthesis. Ribose compounds selectively phosphorylated² on positions 3 and 5 may be anticipated to be particularly favorable with respect to biological reactivation in actively growing cancer cells. In this respect, the anisylidene group has been found to be suitable for the selective protection of hydroxyls on positions 2 and 4 in the course of these syntheses.

New crystalline anisylidene D-ribose derivatives (II-IV) that may be used in the synthesis of new anticancer compounds have been obtained (see Scheme I).

The structural proof of II was based on evidence obtained by means of acetylation and reduction studies. Demercaptalation of 3,5-di-O-acetyl-2,4-O-anisylidene-D-ribose di-n-propyl dithioacetal (V) in aqueous acetone in the usual manner produced an oil which was reduced with sodium borohydride, and the product then was acetylated to yield an optically inactive crystalline product VII. Upon deacetylation of this product, another optically inactive crystalline product VIII was obtained. These results may be construed as evidence of a symmetrical structure of the molecule.³ It was therefore inferred that VII was 1,3,5-tri-Oacetyl-2,4-O-anisylideneribitol, which in turn required VIII to be 2,4-O-anisylideneribitol.

Experimental Section

All reagents and solvents were of ordinary grade quality. When required, solvents were purified and dried according to standard methods.⁴ All evaporations, unless when stated otherwise, were conducted in a rotary flash evaporator at water aspirator pressure. Melting points were determined on a Kofler apparatus and are uncorrected. Infrared spectra of the compounds prepared were obtained on a Unicam SP. 200 recording spectrophotometer, using a 3% solution in CHCl₃ in a 0.1-mm.

NaCl cell. Ultraviolet spectra were obtained on a Beckman DK2 recording ultraviolet spectrophotometer. Elementary analyses were done by the Microanalytical Section, National Chemical Research Laboratory, C.S.I.R., Pretoria.

2,4-O-Anisylidene-D-ribose Di-n-propyl Dithioacetal (II).— Anisaldehyde (4.36 ml., 36 mmoles) was added to a solution of D-ribose di-n-propyl dithioacetal (8.53 g., 30 mmoles) in 20 ml. of dioxane and the solution was cooled to $5-10^{\circ}$ in an ice bath. To this solution was added a mixture of 29 ml. of concentrated HCl (sp. gr. 1.16) and 16 ml. of water, previously cooled to $5-10^{\circ}$, and the mixture was shaken vigorously with intermittant cooling. Within 1 min. a precipitate formed. After 4 min. ice water (10 ml.) was added and the mixture was shaken for another min. The product was then filtered rapidly and washed with ice water (50 ml.). The precipitate was taken up in 500 ml of ethyl acetate and successively washed with cold saturated NaHCO₂ and water. After drying (Na₂SO₄), the ethyl acetate was evaporated under reduced pressure to yield 11.0 g. of a crystal-

⁽¹⁾⁽a) W. J. Serfontein and J. H. Jordaan, J. Org. Chem., 27, 3332 (1962);
(b) J. H. Jordaan and W. J. Serfontein, *ibid.*, 28, 1395 (1963).

⁽²⁾ M. Smith, G. I. Drummond, and H. G. Khorana, J. Am. Chem. Soc., 83, 698 (1961).

⁽³⁾ H. Zinner and H. Schmandke, Chem. Ber., 94, 1304 (1961).

⁽⁴⁾ A. I. Vogel, "A Textbook of Practical Organic Chemistry," 3rd Ed., Longmans, Green and Co., New York, N. Y., 1957.